
A remark on solutions of reflection equation for the critical ZN-symmetric vertex model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 521

(http://iopscience.iop.org/0305-4470/37/2/019)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 18:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 521–535 PII: S0305-4470(04)64539-2

A remark on solutions of reflection equation for the
critical ZN -symmetric vertex model

Yuji Yamada

Department of Mathematics, Rikkyo University, 3-34-1, Nishi Ikebukuro, Toshima-ku, Tokyo,
171-8501, Japan

Received 5 June 2003, in final form 6 November 2003
Published 15 December 2003
Online at stacks.iop.org/JPhysA/37/521 (DOI: 10.1088/0305-4470/37/2/019)

Abstract
We consider solutions to the reflection equation for the critical ZN -symmetric
vertex model, which is the trigonometric limit of the elliptic ZN -symmetric
R-matrix of Belavin. These critical R-matrices have two parameters u and η.
The transfer matrices T (u, η) constructed from this R-matrix R(u, η) under
the cyclic boundary condition are commutative among different u when η is in
common, [T (u, η), T (v, η)] = 0. We prove that an arbitrary solution to the
reflection equation is independent of the parameter η.

PACS numbers: 02.30.Ik, 05.50.+q, 75.10.Pq

1. Introduction

The Yang–Baxter equation

R01(u)R02(u + v)R12(v) = R12(v)R02(u + v)R01(u) ∈ End(CN ⊗ CN ⊗ CN)

guarantees the commutativity of the transfer matrices T (u)

T (u)T (v) = T (v)T (u)

under the cyclic boundary condition

R01(u)R02(u) · · · R0l (u) ∈ End(CN ⊗
l times︷ ︸︸ ︷

CN ⊗ · · · ⊗ CN).

T (u) := tr0(R
01(u)R02(u) · · · R0l (u)) ∈ End(

l times︷ ︸︸ ︷
CN ⊗ · · · ⊗ CN).

Sklyanin [1] proposed the reflection equation

R12(u1 − u2)K
1(u1)R

21(u1 + u2)K
2(u2)

= K2(u2)R
12(u1 + u2)K

1(u1)R
21(u1 − u2) ∈ End (CN ⊗ CN) (1.1)
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associated with a solution R(u) to the Yang–Baxter equation. When the R-matrix is the one
of Belavin’s ZN -symmetric vertex model R(u, η) [2], transfer matrices TK(u) with a fixed
boundary condition specified by K(u), a solution to the reflection equation (1.1),

TK(u) := tr0(K+(u)T (−u)−1K(u)T (u))

K+(u) = K (−u − Nη/2)

also satisfies

TK(u)TK(v) = TK(v)TK(u)

so constitutes another commutative family of transfer matrices.
But we do not know much about solutions to the reflection equation up to now. When

the original papers of Sklyanin and Kullish [1, 3] were published, they proposed N = 2 and
diagonal K-matrix. Later Konno and Inami [4] and Hou and Yue [5] independently investigated
solutions in the case of the eight-vertex model, and classified all elliptic solutions in this case.
These works are all contained in the ‘sl2-theory’. Beyond sl2, we have the results by Komori
and Hikami [6], in which they proposed elliptic solutions with four parameters besides the
spectral one for any Belavin ZN -symmetric vertex model, and the results of Ozaki [7] and
Furutsu and Kojima [8] which list the trigonometric diagonal solutions. In the case of N = 3,
neither of them give the complete trigonometric solution to the reflection equation, and is
contained in the solution obtained in [13].

In this paper, we study solutions to the reflection equation in the case when the R-matrix
is the trigonometric limit of the Belavin ZN -symmetric vertex model. We divide the matrix
elements of the reflection equation into 15 groups and clarify the dependence among them,
then we prove that any solution to the reflection equation (1.1) is independent of the parameter
η of R(u, η) for all N.

In section 2, we review the R-matrix of the ZN -symmetric vertex model of Belavin, and
the necessary notation for trigonometric functions and matrices. We write up the components
of the reflection equation, and divide them into 15 groups. Relations among these groups are
shown, and here we prove the main result of this paper, theorems 2 and 3. We devote section
4 to discussions.

2. The Belavin ZN -symmetric vertex model

We fix the standard orthonormal basis {e0, e1, . . . , eN−1} of the vector space CN , and extend
the indices to all integers by defining ej+N = ej . The matrix element Ai

j of A ∈ End(CN) is

defined by Aej = ∑N−1
i=0 eiA

i
j , and two matrices g and h are also defined by

gej = ωjej hej = ej+1

where ω = e2
√−1π/N = e [2/N]. They satisfy gh = ωhg. We often abbreviate the exponential

function e
√−1πu and the trigonometric functions sin πu and cos πu to e [u] , s [u] and c [u],

respectively. We define the theta function ϑ
[

a

b

]
(u|τ) by

ϑ

[
a

b

]
(u| τ) =

∑
n∈Z

e[(n + a)2τ + 2(n + a)(u + b)]. (2.1)

Let q = e [2τ ] = e2
√−1πτ , then the theta function behaves in the limit of τ → +

√−1∞ as

ϑ

[
a

b

]
(u| τ) =

{
qϕ(a)2

e [2ϕ(a)(u + b)] + o
(
qϕ(a)2)

for a �≡ 1/2
q1/4 · 2c [u + b] + o(q1/4) for a ≡ 1/2

where ϕ(a) = a − [a + 1/2] and [α] denotes the largest integer not exceeding α.
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Definition 1 ([2]). The R-matrix of the critical ZN -symmetric vertex model of Belavin
R(u) ∈ End(CN ⊗ CN) is defined by

R(u) = lim
τ→+

√−1∞
1

N

N−1∑
α,β=0

wα,β(u, η|τ)h−αgβ ⊗ g−βhα.

wα,β(u, η|τ) = ϑ

[
α/N + 1/2
β/N + 1/2

] (
u +

η

N

∣∣∣ τ) ·
(

ϑ

[
α/N + 1/2
β/N + 1/2

] ( η

N

∣∣∣ τ))−1

.

The following symmetries of the Belavin R-matrix are immediate from the definition.

Proposition 1. The critical ZN -symmetric vertex model of Belavin R(u) has two symmetries,

ZN -symmetry : R
ij

kl (u) = R
i+p,j+p

k+p,l+p (u) for p ∈ Z/NZ

Conservation law : R
ij

kl (u) = δi+j,k+lR
ij

kl (u)

which are equivalent to

(h ⊗ h)−1R(u)(h ⊗ h) = (g ⊗ g)−1R(u)(g ⊗ g) = R(u).

It satisfies the Yang–Baxter equation.

Theorem 1 ([9–11]). The critical ZN -symmetric vertex model of Belavin R(u) satisfies

R01(u)R02(u + v)R12(v) = R12(v)R02(u + v)R01(u) ∈ End(CN ⊗ CN ⊗ CN)

where, for example, R02(u) acts as R(u) on the zeroth and the second components of CN ⊗
CN ⊗ CN and as an identity on the first component. (We are now counting from zero.)

According to these symmetries, the matrix elements R
ij

kl(u) of R(u) depend only on i − k and
j − k,

R
ij

kl(u) = δi+j,k+l · Ri−k
0

j−k

l−k (u) =: δi+j,k+l · Si−k,j−k(u). (2.2)

For later use, we define

Definition 2.

a∗ := a − N
[ a

N

]
where a∗ is the integer a in the interval [0, N) which is congruent to a modulo N. The explicit
form of Sab(u) is obtained as

Proposition 2 ([12]).

Sab(u) =



s [u + η]

s [η]
for a ≡ b ≡ 0

e
[

2

(
1

2
− a∗

N

)
u

]
for a ≡ 1, 2, . . . , N − 1 b ≡ 0

e
[

2

(
b∗

N
− 1

2

)
η

]
s [u]

s [η]
for a ≡ 0, b ≡ 1, 2, . . . , N − 1

0 for a, b ≡ 1, 2, . . . , N − 1

. (2.3)
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3. Reflection equation

Definition 3 (reflection equation). The reflection equation is

R12(u1 − u2)K
1(u1)R

21(u1 + u2)K
2(u2)

= K2(u2)R
12(u1 + u2)K

1(u1)R
21(u1 − u2) ∈ End(CN ⊗ CN) (3.1)

where

R12(u) = R(u) R21(u) = PR(u)P P (x ⊗ y) = y ⊗ x for any x, y ∈ CN

K1(u) = K(u) ⊗ Id K2(u) = Id ⊗ K(u).

We will consider solutions K(u) ∈ End(CN) to the reflection equation (3.1) associated with
the critical ZN -symmetric vertex model of Belavin R(u) defined in (2.2) and (2.3). We define
the elements of K(u) ∈ End(CN) by

K(u)ij = ci
j (u)

and substituting (2.2) into the reflection equation (3.1), we have

Proposition 3. The (m1m2|i1i2) component of the reflection equation is∑
j,l∈Z/NZ

Sl−m2,l−m1(u1 − u2)S
l−j,i1−l (u1 + u2)c

m1+m2−l
i1+j−l (u1)c

j

i2
(u2)

=
∑

j,l∈Z/NZ

Sj−i2,i1−j (u1 − u2)S
j2−l,j−m1(u1 + u2)c

m1+l−j

i1+i2−j (u1)c
m2
l (u2) (3.2)

where i1, i2,m1,m2 ∈ Z/NZ.

We will abbreviate Sab(u1 − u2) and Sab(u1 + u2) simply to Sab(−) and Sab(+), respectively,

Sab(−) := Sab(u1 − u2) Sab(+) := Sab(u1 + u2).

And we will also employ the shorthand notation ca
b
c
d for the product of ca

b(u1) and cc
d(u2) in

this order,

ca
b
c
d := ca

b(u1)c
c
d(u2).

For example, (3.2) is rewritten in this notation as∑
j l

Sl−m2,l−m1(−)Sl−j,i1−l(+)c
m1+m2−l
i1+j−l

,j

,i2
=
∑
j l

Sj−i2,i1−j (−)Sj2−l,j−m1(+)c
m1+l−j

i1+i2−j
,m2
,l . (3.3)

Substituting (2.3)

Sab(u) = δa0S
0b(u) + δb0S

a0(u) − δa0δb0S
00(u)
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into the (m1m2|i1i2) component of the reflection equation (3.3), after some calculation we
have

S0,m2−m1(−)S0,i1−m2(+)c
m1
i1

m2
i2

+ Sm1−m2,0(−)S0,i1−m1(+)c
m2
i1

m1
i2

− S0,i1−i2(−)S0,i2−m1(+)c
m1
i1

m2
i2

− Si1−i2,0(−)S0,i1−m1(+)c
m1
i2

m2
i1

+ δm1,i1



N−1∑
j=0

Si1−m2,0(−)Si1−j,0(+)c
m2
j

j

i2
− Si1−m2,0(−)S0,0(+)c

m2
i1

i1
i2

−
N−1∑
j=0

Si1−i2,0(−)Si1−j,0(+)c
j

i2

m2
j + Si1−i2,0(−)S0,0(+)c

i1
i2

m2
i1


+ δm2,i1


N−1∑
j=0

S0,i1−m1(−)Si1−j,0(+)c
m1
j

j

i2
− S0,i1−m1(−)S0,0(+)c

m1
i1

i1
i2


+ δm1,i2

−
N−1∑
j=0

S0,i1−i2(−)Si2−j,0(+)c
j

i1

m2
j + S0,i1−i2(−)S0,0(+)c

i2
i1

m2
i2


+ δm1,m2

{−S0,0(−)S0,i1−m1(+)c
m1
i1

m1
i2

}
+ δi1,i2

{
S0,0(−)S0,i1−m1(+)c

m1
i1

m2
i2

}
+ δm1,m2 · δm2,i1

−
N−1∑
j=0

S0,0(−)Si1−j,0(+)c
i1
j

j

i2
+ S0,0(−)S0,0(+)c

i1
i1

i1
i2


+ δm1,i1 · δi1,i2


N−1∑
j=0

S0,0(−)Si1−j,0(+)c
j

i1

m2
j − S0,0(−)S0,0(+)c

i1
i1

m2
i1

 = 0.

(3.4)

The reflection equation is a matrix equation in End(CN ⊗CN). Its components are represented
by four indices i1, i2,m1,m2 ∈ Z/NZ as above, so it consists of N4 scalar equations. We
divide them into 15 groups according to the situation of the coincidence of these four indices
i1, i2,m1,m2 ∈ Z/NZ. We define

Equation (I) :=
{

(m1m2|i1i2)-component

of the reflection equation

∣∣∣∣∣where m1,m2, i1, i2 are

all different from each other

}

Equation (II) :=
{

(m1m2|i1i2)-component

of the reflection equation

∣∣∣∣∣ where i1 = i2 and m1,m2, i1 are

different from each other

}

Equation (III) :=
{

(m1m2|i1i2)-component

of the reflection equation

∣∣∣∣∣ where m1 = m2 and m2, i1, i2 are

different from each other

}
.

Equation (I) consists of N(N − 1)(N − 2)(N − 3) scalar equations, and both equations (II)
and (III) consist of N(N − 1)(N − 2) scalar equations. We write down the definitions for the
rest in a simpler way.
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Equation (IV) =
{

m1 = i1 and m1,m2, i2 are

different from each other

}
Equation (X) := {m1 = i2 �= m2 = i1}

Equation (V) :=
{

m2 = i2 and m1,m2, i1 are

different from each other

}
Equation (XI) := {m1 = i1 = i2 �= m2}

Equation (VI) :=
{

m2 = i1 and m1,m2, i2 are

different from each other

}
Equation (XII) := {m1 = m2 = i1 �= i2}

Equation (VII) :=
{

m1 = i2 and m1,m2, i1 are

different from each other

}
Equation (XIII) := {m1 = m2 = i2 �= i1}

Equation (VIII) := {m1 = m2 �= i1 = i2} Equation (XIV) := {m1 �= m2 = i1 = i2}
Equation (IX) := {m1 = i1 �= m2 = i2} Equation (XV) := {m1 = m2 = i1 = i2} .

If we write the equations in equation (VIII), namely the case of m1 = m2 �= i1 = i2 in (3.4),
we find that they all vanish.

Lemma 1 (Equation (VIII)). Equation (VIII) consists of trivial equations.

To deal with other groups, we have to substitute the explicit form of Sab(u) in (2.3) into the
components of the reflection equation. We prepare some notation here to express the results.

Definition 4. For any three integers a, b and c, we define P(a, b, c) by

P(a, b, c) := 1

N
((a − b)∗ + (b − c)∗ + (c − a)∗ − N).

We omit the proof of the following lemma.

Lemma 2. For any integer a, we have

a + (−a)∗ =
{
N for a �≡ 0 mod N

0 for a ≡ 0 mod N.

Three mutually different integers a1, a2 and a3 uniquely define an element σ in the symmetric
group S3 such that aσ(1) < aσ(2) < aσ(3). We have

P(a1, a2, a3) =
{

1 for sgn(σ ) = 1
0 for sgn(σ ) = −1

consequently

P(a1, a2, a3) = P(a3, a1, a2) = P(a2, a3, a1)

�= P(a3, a2, a1) = P(a1, a3, a2) = P(a2, a1, a3).

Definition 5.

Ã(α, β, γ |u1, u2) =
N−1∑
j=0

Sα−j,0(+)c
β

j
j
γ

B̃(α, β, γ |u1, u2) =
N−1∑
j=0

Sα−j,0(+)c
j

β

γ

j

A(α, β, γ |u1, u2) =
N−1∑
j=0

e
[
− 2

N
(α − j)∗(u1 + u2)

]
c
β

j
j
γ
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B(α, β, γ |u1, u2) =
N−1∑
j=0

e
[
− 2

N
(α − j)∗(u1 + u2)

]
c
j

β

γ

j .

As we are abbreviating ci
j (u1)c

k
l (u2) to ci

j
k
l while keeping the order of u1 and u2, we also write

Ã(α, β, γ |u1, u2) and A(α, β, γ |u1, u2) as

Ã(α, β, γ ) := Ã(α, β, γ |u1, u2) A(α, β, γ ) := A(α, β, γ |u1, u2)

for short.

Lemma 3.

Ã(α, β, γ ) = e [u1 + u2] A(α, β, γ ) +
e [−η]

s [η]
s [u1 + u2] cβ

α
α
γ

B̃(α, β, γ ) = e [u1 + u2] B(α, β, γ ) +
e [−η]

s [η]
s [u1 + u2] cα

β
γ
α .

Here we list the explicit forms of the components of the reflection equations. In the notation
defined so far and

u12 := u1 − u2 v12 := u1 + u2 (3.5)

they are

Equation (I) (m1,m2, i1, i2) : (P (m1, i1,m2) − P(m1, i1, i2)) (1 − e [−2u12]) c
m1
i1

m2
i2

+ e
[
− 2

N
(m1 − m2)

∗u12

]
c
m2
i1

m1
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
c
m2
i2

m1
i1

= 0

Equation (II) (m1,m2, i) : (P (m2,m1, i)e [−2u12] + (1 − P(m2,m1, i)))c
m1
i

m2
i

= e
[
− 2

N
(m1 − m2)

∗u12

]
c
m2
i

m1
i

Equation (III) (m, i1, i2) : (P (i1, i2,m)e [−2u12] + (1 − P(i1, i2,m)))cm
i1

m
i2

= e
[
− 2

N
(i1 − i2)

∗u12

]
cm
i2

m
i1

Equation (IV) (m, i1, i2) : e
[
− 2

N
(i1 − m)∗u12

]
A(i1,m, i2)

− e
[
− 2

N
(i1 − i2)

∗u12

]
B(i1, i2,m) +

e [−η]

s [η]
e [−v12] s [v12]

×
(

e
[
− 2

N
(i1 − m)∗u12

]
cm
i1

i1
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
c
i1
i2

m
i1

)
= 0

Equation (V) (m, i1, i2) : e
[
− 2

N
(m − i2)

∗u12

]
c
i2
i1

m
i2

= e
[
− 2

N
(i1 − i2)

∗u12

]
cm
i2

i2
i1

Equation (VI) (m, i1, i2) : s [v12] e [u12]

(
e
[
− 2

N
(m − i1)

∗u12

]
c
i1
i1

m
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
cm
i2

i1
i1

)
− 2

√−1P(i1, i2,m)

× s [u12] s [v12] cm
i1

i1
i2

+ s [u12] e [v12] A(i1,m, i2) = 0
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Equation (VII) (m, i1, i2) : s [v12] e [u12]

(
e
[
− 2

N
(i1 − i2)

∗u12

]
c
i2
i2

m
i1

− e
[
− 2

N
(i2 − m2)

∗u12

]
cm
i1

i2
i2

)
− 2

√−1P(i2, i1,m)

× s [u12] s [v12] c
i2
i1

m
i2

+ s [u12] e [v12] B(i2, i1,m) = 0

Equation (VIII) (m, i) : 0 = 0 trivial!

Equation (IX) (i1, i2) : A(i1, i2, i2) − B(i1, i2, i2)

+
e [−η]

s [η]
e [−v12] s [v12]

(
c
i2
i1

i1
i2

− c
i1
i2

i2
i1

)
= 0

Equation (X) (i1, i2) : e [u12] s [v12]

(
e
[
− 2

N
(i2 − i1)

∗u12

]
c
i1
i1

i2
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
c
i2
i2

i1
i1

)
+ s [u12] e [v12] (A(i1, i2, i2) − B(i2, i1, i1)) = 0

Equation (XI) (m, i) : e [v12]

(
s [η] e

[
2

N
(m − i)∗u12

]
A(i,m, i)

− e [u12] s [u12 + η] B(i, i,m)) − s [v12] e [−η]

×
(

ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
= 0

Equation (XII) (m, i) : e [v12]

(
s [η] e

[
2

N
(i − m)∗u12

]
B(m, i,m)

− e [u12] s [u12 + η] A(m,m, i)

)
− s [v12] e [−η]

(
cm
m

m
i − e

[
2

N
(i − m)∗u12

]
cm
i

m
m

)
= 0

Equation (XIII) (m, i) : s [v12]

(
cm
i

m
m − e

[
− 2

N
(i − m)∗u12

]
cm
m

m
i

)
− s [u12] e [2u2] B(m, i,m) = 0

Equation (XIV) (m, i) : s [v12]

(
cm
i

i
i − e

[
− 2

N
(m − i)∗u12

]
ci
i
m
i

)
− s [u12] e [2u2] A(i,m, i) = 0

Equation (XV) (i) : A(i, i, i) − B(i, i, i) = 0.

Lemma 4 (equation (XI)). If K(u) = (
ca
b(u)

)
ab

satisfies equation (XIV), then it also satisfies
equation (XI).

Proof of lemma 4. Any element of equation (XIV) has the form

s [u12] e [v12] A(i,m, i) = e [u12] s [v12]

(
cm
i

i
i − e

[
− 2

N
(m − i)∗u12

]
ci
i
m
i

)
(3.6)

for m �= i. When we interchange u1 and u2, then u12, v12, c
a
b
c
d and A(i, j, k) are altered into

u12|u1↔u2 = −u12 v12|u1↔u2 = v12

ca
b
c
d |u1↔u2 = cc

d
a
b A(i, j, k)|u1↔u2 = B(i, k, j)

(3.7)
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and (3.6) becomes

s [u12] e [v12] B(i, i,m) = −e [−u12] s [v12]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
. (3.8)

After substituting A(i,m, i) in (3.6) and B(i, i,m) in (3.8) into equation (XI)

s [v12] e [−η]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
− e [v12]

×
(

s [η] e
[

2

N
(m − i)∗u12

]
A(i,m, i) − e [u12] s [u12 + η] B(i, i,m)

)
= 0

then we have

s [u12] · s [v12] e [−η]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
− s [u12] · e [v12] s [η] e

[
2

N
(m − i)∗u12

]
A(i,m, i)

+ s [u12] · e [v12] e [u12] s [u12 + η] B(i, i,m)

= s [u12] s [v12] e [−η]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
− s [η] e

[
2

N
(m − i)∗u12

]
· [s [u12] e [v12] A(i,m, i)]

+ e [u12] s [u12 + η] · [s [u12] e [v12] B(i, i,m)]

= s [u12] s [v12] e [−η]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
− s [η] e

[
2

N
(m − i)∗u12

]
·
[

e [u12] s [v12]

(
cm
i

i
i − e

[
− 2

N
(m − i)∗u12

]
ci
i
m
i

)]

− e [u12] s [u12 + η] ·
[

e [−u12] s [v12]

(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)]
= s [v12] (s [u12] e [−η] + s [η] e [u12] − s [u12 + η])ci

i
m
i

− s [v12] e
[

2

N
(m − i)∗u12

]
(s [u12] e [−η] + s [η] e [u12] − s [u12 + η])cm

i
i
i

= s [v12] (s [u12] e [−η] + s [η] e [u12] − s [u12 + η])

×
(
ci
i
m
i − e

[
2

N
(m − i)∗u12

]
cm
i

i
i

)
.

Because the second factor of the last line is zero,

s [u12] e [−η] + s [η] e [u12] − s [u12 + η]

= 1

2
√−1

(
(e [u12] − e [−u12])e [−η] + (e [η] − e [−η])e [u12]

−(e [u12 + η] − e [−u12 − η])

)
= 0

equation (XI) follows from equation (XIV). �

Almost the same arguments also show

Lemma 5 (equation (XII)). If K(u) = (
ca
b(u)

)
ab

satisfies equation (XIII), then it also satisfies
equation (XII).
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Definition 6. If two functions f (u) and g(u) satisfy

f (u1)g(u2) = f (u2)g(u1)

for arbitrary u1 and u2, then we write

f (u) ∼ g(u).

This relation ‘∼’ is reflexive and symmetric but not transitive, so it is not an equivalence
relation. Any function f (u) satisfies f (u) ∼ 0(u), where 0(u) denotes the identically zero
function.

Lemma 6 (equations (IX) and (XV)). That K(u) = (
ca
b(u)

)
ab

satisfies equation (IX) and
equation (XV) is equivalent to that

ca
b(u) ∼ cb

a(u)

for any a, b ∈ Z/NZ.

Proof of lemma 6. When we rewrite equation (IX) in terms of

γj,b := cb
j
j

b − c
j

b
b
j

we have
N−1∑
j=0

e
[
− 2

N
(i1 − j)∗v12

]
γj,i2 = −e [−η]

s [η]
e [−v12] s [v12] γi1,i2 (i1, i2 ∈ Z/NZ, i1 �= i2).

The equations in equation (XV) are expressed in the same formula by setting i1 = i2

N−1∑
j=0

e
[
− 2

N
(i2 − j)∗v12

]
γj,i2 = 0.

If we fix i2 = i and consider the N equations for i1 = 0, 1, 2, . . . , N − 1, then we have
1 − f xN−1 xN−2 · · · x

x 1 − f xN−1 · · · x2

x2 x 1 − f · · · x3

...
...

. . .
...

xN−1 xN−2 · · · x 1 − f




γ0i

γ1i

γ2i

...

γN−1i

 = 0 (i ∈ Z/NZ)

where

x = e
[
− 2

N
v12

]
f = e [−η]

s [η]
e [−v12] s [v12] .

The determinant � of the above coefficient matrix becomes

� = (1 − xN)N
N−1∏
k=0

(
1

e [2η] − 1
+

1

1 − ωkx

)
(ω = e [2/N])

and obviously not generically zero. We can conclude that if K(u) = (
ca
b(u)

)
ab

satisfies
equations (IX) and (XV), then we have

γab = cb
a(u1)c

a
b(u2) − cb

a(u2)c
a
b(u1) ≡ 0 (a, b ∈ Z/NZ) .

The converse is immediate. �
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Equation (X) consists of N(N − 1) equations indexed by i1, i2 ∈ {0, 1, 2, . . . , N − 1}
(i1 �= i2),

e [u12] s [v12]

(
e
[
− 2

N
(i2 − i1)

∗u12

]
c
i1
i1

i2
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
c
i2
i2

i1
i1

)
+ s [u12] e [v12] (A(i1, i2, i2) − B(i2, i1, i1)) = 0. (3.9)

When we interchange u1 and u2 in (3.9) and make use of (3.7), we have the equation which is
obtained after we interchange i1 and i2 in (3.9).

Definition 7.

Equation (X)1/2 :=
{

(m1m2|i1i2)-component
of the reflection equation

∣∣∣∣∣ where m1 = i2 �= m2 = i1

and i1 < i2

}
.

Lemma 7 (equation (X)). Equation (X) follows from equation (X)1/2.

Similarly, when we interchange (u1, i1) with (u2, i2) in the equations of equation (VII), we
obtain those of equation (VI).

Lemma 8 (equation (VII)). Equation (VII) is equivalent to equation (VI).

We investigate all cases which occur according to the order of the indices of the equations in
equations (II), (III) and (V), then we have

Lemma 9 (equation (II)).

(i) If m1 < i < m2, then

e
[

2

N
m1u

]
c
m1
i (u) ∼ e

[
2

N
m2u

]
c
m2
i (u).

(ii) If m1 < m2 < i or i < m1 < m2, then

e
[

2

N
(m1 + N)u

]
c
m1
i (u) ∼ e

[
2

N
m2u

]
c
m2
i (u).

Lemma 10 (equation (III)).

(i) If i1 < i2 < m or m < i1 < i2, then

e
[

2

N
i1u

]
cm
i1
(u) ∼ e

[
2

N
i2u

]
cm
i2
(u).

(ii) If i1 < m < i2, then

e
[

2

N
(i1 + N)u

]
cm
i1
(u) ∼ e

[
2

N
i2u

]
cm
i2
(u).

Lemma 11 (equation (V)).

(i) If m < i1 < i2, i1 < m < i2, i2 < m < i1 or i2 < i1 < m, then

e
[

2

N
i1u

]
c
i2
i1
(u) ∼ e

[
2

N
mu

]
cm
i2
(u).

(ii) If m < i2 < i1, then

e
[

2

N
i1u

]
c
i2
i1
(u) ∼ e

[
2

N
(m + N)u

]
cm
i2
(u).



532 Y Yamada

� g�f �
α

Figure 1. Graphical representation of zαf (u) ∼ g(u). We put functions f (u) and g(u) on the
vertices, and the arrow from f (u) to g(u) with the variable α on it implies zαf (u) ∼ g(u).
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Figure 2. Compatibility among zαf (u) ∼ g(u), zβg(u) ∼ h(u) and zγ h(u) ∼ f (u). If there is
a closed circuit along the directions of arrows and the sum of all variables on arrows concerned is
zero, these relations are compatible to ensure that there exist all non-zero functions on all vertices.
In the figure above, if α + β + γ = 0, then there is a possibility that f, g and h are all non-zero at
the same time, but if α + β + γ �= 0, then at least one of f, g and h should be zero. In the latter
case, only two of f, g and h are capable of being non-zero simultaneously.

(iii) If i1 < i2 < m, then

e
[

2

N
(i1 + N)u

]
c
i2
i1
(u) ∼ e

[
2

N
mu

]
cm
i2
(u).

When we fix three integers a, b, c ∈ {0, 1, 2, . . . , N − 1} such that a < b < c, lemmas 9–11
give the following twelve relations among six functions ca

b(u), cb
c (u), cc

a(u), cb
a(u), cc

b(u) and
ca
c (u).

e
[

2

N
(b + N)u

]
cb
a(u) ∼ e

[
2

N
cu

]
cc
a(u) e

[
2

N
au

]
ca
b(u) ∼ e

[
2

N
cu

]
cc
b(u)

e
[

2

N
(a + N)u

]
ca
c (u) ∼ e

[
2

N
bu

]
cb
c (u) e

[
2

N
bu

]
ca
b(u) ∼ e

[
2

N
cu

]
ca
c (u)

e
[

2

N
(a + N)u

]
cb
a(u) ∼ e

[
2

N
cu

]
cb
c (u) e

[
2

N
au

]
cc
a(u) ∼ e

[
2

N
bu

]
cc
b(u)

e
[

2

N
bu

]
ca
b(u) ∼ e

[
2

N
cu

]
cc
a(u) e

[
2

N
cu

]
ca
c (u) ∼ e

[
2

N
bu

]
cb
a(u)

e
[

2

N
(a + N)u

]
cb
a(u) ∼ e

[
2

N
cu

]
cc
b(u) e

[
2

N
cu

]
cb
c (u) ∼ e

[
2

N
(a + N)u

]
ca
b(u)

e
[

2

N
au

]
cc
a(u) ∼ e

[
2

N
bu

]
cb
c (u) e

[
2

N
bu

]
cc
b(u) ∼ e

[
2

N
au

]
ca
c (u).

We examine the compatibility condition among these twelve equations and lemma 6, we obtain
the following lemma.
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Figure 3. Graphical representation of the twelve relations among
{
ca
b , cb

c , c
c
a, c

b
a, c

c
b, c

a
c

}
.

In figure 3, there are six compatible combinations among
{
ca
b, c

a
c , c

b
c , c

b
a, c

c
a, c

c
b

}
. Lemma 6

excludes three of them.

Lemma 12. Let a, b, c ∈ {0, 1, 2, . . . , N − 1} be a < b < c, When we fix three integers a, b,

c ∈ {0, 1, 2, . . . , N − 1} , a < b < c, then there are six elements of K(u) = (
ci
j (u)

)
ij

whose
indices are a, b or c.

Cabc := {
ca
b, c

a
c , c

b
c , c

b
a, c

c
a, c

c
b

}
.

There are three possibilities for maximal subsets in Cabc consisting of only non-zero elements,

(1)
{
ca
b(u), ca

c (u), cb
c (u), cb

a(u)
}

(2)
{
ca
b(u), ca

c (u), cc
a(u), cc

b(u)
}

(3)
{
cb
c (u), cb

a(u), cc
a(u), cc

b(u)
}
.

When we write z := e
[

2
N

u
]
, they satisfy

(1)
{
ca
b(u), ca

c (u), cb
c (u), cb

a(u)
} ∼ {

z−a−ba(u), z−a−ca(u), z−b−c+Na(u), z−a−ba(u)
}

(2)
{
ca
b(u), ca

c (u), cc
a(u), cc

b(u)
} ∼ {

z−a−ba(u), z−a−ca(u), z−a−ca(u), z−b−ca(u)
}

(3)
{
cb
c (u), cb

a(u), cc
a(u), cc

b(u)
} ∼ {

z−b−ca(u), z−a−b−Na(u), z−a−ca(u), z−b−ca(u)
}

for some function a(u), where

{f1(u), f2(u), f3(u), f4(u)} ∼ {g1(u), g2(u), g3(u), g4(u)}
means that fj (u)gj (v) = fj (v)gj (u) for j = 1, 2, 3, 4.
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Lemma 13. Equation (IV) follows from equations (V) and (VI).

Proof of lemma 13. An equation in equation (VI) is

s [u12] e [v12] A(i1,m, i2)

= − s [v12] e [u12]

(
e
[
− 2

N
(m − i1)

∗u12

]
c
i1
i1

m
i2

− e
[
− 2

N
(i1 − i2)

∗u12

]
cm
i2

i1
i1

)
+ 2

√−1P(i1, i2,m)s [u12] s [v12] cm
i1

i1
i2
. (3.10)

When we interchange u1 with u2 in (3.10), we have

s [u12] e [v12] B(i1, i2,m)

= s [v12] e [u12]

(
e
[
− 2

N
(m − i1)

∗u12

]
cm
i2

i1
i1

− e
[
− 2

N
(i1 − i2)

∗u12

]
c
i1
i1

m
i2

)
+ 2

√−1P(i1, i2,m)s [u12] s [v12] c
i1
i2

m
i1

(3.11)

We substitute A(i1,m, i2) in (3.10) and B(i1, i2,m) in (3.11) into equation (IV), then we obtain

e
[
− 2

N
(i1 − m)∗(u1 − u2)

]
cm
i1

i1
i2

= e
[
− 2

N
(i1 − i2)

∗(u1 − u2)

]
c
i1
i2

m
i1

which is the equation in equation (V). �

Summarizing the lemmas so far we obtained,

II III V → IV VIII : trivial
↖ ↑ ↗ ↑

I Lemma 12 VI X1/2 XIII XIV
↙ ↘ ↓ ↓ ↓

IX XV VII XII XI

we have

Theorem 2. Solutions to the reflection equation for the critical ZN -symmetric vertex model
of Belavin are determined by lemma 12, equations (I), (VI), (X)1/2, (XIII) and (XIV).

Because lemma 12, equations (I), (VI), (X), (XIII) and (XIV) are not concerned with the
parameter η contained in R(u, η) at all, we have proved that

Theorem 3. Solutions to the reflection equation for the critical ZN -symmetric vertex model
are independent of the parameter η of R(u, η).

4. Discussion

When we applied theorem 3 to the N = 2, the case of the eight-vertex model, the 24 = 16
elements of the reflection equation reduce to five equations. Lemma 12, equations (I) and (VI)
are empty when N = 2, and lemma 6 implies that c0

1(u) ∼ c1
0(u), namely

K(u) =
(

c0
0(u) c0

1(u)

c0
1(u) c1

1(u)

)
=
(

c0
0(u) µc(u)

νc(u) c1
1(u)

)
. (4.12)



A remark on solutions of reflection equation for the critical ZN -symmetric vertex model 535

The equations we have to solve are

Equation (X) (0, 1) : s [u1 + u2]
(
c1

1
0
0 − c0

0
1
1

)
+ s [u1 − u2]

(
c0

0
0
0 − c1

1
1
1

) = 0
Equation (XIII) (0, 1) : s [2u2] c0

1
0
0 − s [u1 + u2] c0

0
0
1 − s [u1 − u2] c1

1
0
1 = 0

Equation (XIII) (1, 0) : s [2u2] c1
0

1
1 − s [u1 + u2] c1

1
1
0 − s [u1 − u2] c0

0
1
0 = 0

Equation (XIV) (0, 1) : s [2u2] c0
1

1
1 − s [u1 + u2] c1

1
0
1 − s [u1 − u2] c0

0
0
1 = 0

Equation (XIV) (1, 0) : s [2u2] c1
0

0
0 − s [u1 + u2] c0

0
1
0 − s [u1 − u2] c1

1
1
0 = 0.

But the form of K-matrix in (4.12) implies that equations (XIV) (0, 1) and (XIV) (1, 0)

follow from equations (XIII) (1, 0) and (XIII) (0, 1), respectively: we actually have only three
equations to solve, and obtain the full N = 2 solution,

K(u) = f (u)

(
k0e [u] − k1e [−u] k2s [2u]

k3s [2u] k0e [−u] − k1e [u]

)
where f (u) is an arbitrary function. This solution has three free parameters besides the over-all
factor and the spectral parameter. This result coincides with ones in [5] and [4].

The complete solution K(u) for N = 3 case is obtained on the basis of theorem 3, and
the Segre three-fold appears as its parameter space. We report on this result in [13]. For cases
N > 3, the structures of solutions to the trigonometric reflection equation do not seem to be
so simple. It is important to consider the elliptic case directly in these cases.
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